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Abstract -
This paper presents a localization system formobile robots

enabling precise localization in inaccurate building models.
The approach leverages local referencing to counteract in-
herent deviations between as-planned and as-built data for
locally accurate registration. We further fuse a novel camera-
based robust outlier detector with LiDAR data to reject a
wide range of outlier measurements from clutter, dynamic
objects, and sensor failures. We evaluate the proposed ap-
proach on a mobile robot in a challenging real world site. In
presence of clutter and model deviations, our system reduces
the localization error by at least 32%.
A supplementary video summary can be accessed at https:
//youtu.be/amqFPly8ZEQ.
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1 Introduction

Assistive mobile robots in building construction enable
both higher degrees of digitized processes, and reduce risk
for human workers [1]. Construction robots therefore pose
a high potential to transform the building construction pro-
cess and are important facilitators of the ongoing effort for
higher digitization. To this end, mobile robots perceive the
environment with digital sensors, offering ease of relating
information from digital building models to robot percep-
tion. Localizing robots in these building models with high
accuracies then enables them to perform building tasks
with respect to these data, or accurately track construction
progress.
Conventionalmethods for robot localisation in construc-

tion rely on using external sensing, e.g., total stations,
or augmentation of the environment, e.g., with artificial
markers, to achieve high accuracies. However, these solu-
tions require line-of-sight to a manually placed total sta-
tion or marker and therefore depend on time-consuming
manual preparation for every site, thus limiting the ease
and autonomy of such systems. Furthermore, accurately
localizing model information with mobile robots is not
straightforward, due to the following challenges:

Figure 1: Our proposed method localizes a LiDAR scan
against reference surfaces (red) in the mesh of a building
model. The scan of the LiDAR is fused with semantic
information and points are colored according to their high
(yellow - red) or low (blue) probability of belonging to
building structure. Note that points visible through the
transparent ground plane may also appear red. The visible
mismatches between the LiDAR scan and the columns are
not a localization failure, but highlight the challenge of
localizing within a built structure deviating from a planned
model.

• Multi modality: Robotic sensor data is recorded with
extereoceptive sensors, e.g. cameras and LiDARs,
while building models are typically manually created
3D mesh models, rendering data integration and reg-
istration between these domains difficult.

• Deviations: As-built environments typically deviate
from the as-planned state by up to several centime-
ters (cm), rendering global references insufficient for
accurate task execution.

• Clutter: Real construction sites contain numerous
temporary artefacts (e.g. equipment, scaffolding), as
well as dynamic actors, such as human workers. This
clutter is not modelled in the building models and
therefore disturbs registration.

In this work, we propose a robotic localization sys-
tem that addresses these challenges by combining locally
referenced sensing with a learning-based sensor fusion
approach for robust outlier rejection. The system there-
fore requires only on-board sensing without any artificial
preparation of the site. We address the multi-modality
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aspect by converting the mesh model into a sparse point-
cloud which is easily referenced to sensor point-cloud data
using standard scan-matching algorithms. Furthermore,
we propose a task-based referencing solution, yielding
locally accurate localization. Finally, we fuse a novel
learning-based robust detector for outlier rejection on im-
age data with LiDAR data, able to reject clutter that is
outside the training distribution. Our system is tested on a
mobile robot in realistic construction environments, show-
ing a reduction of localization error of at least 30%. In
summary, this paper presents the following contributions:

• Fusing range sensing data with learned visual outlier
filters, producing semantically annotated point clouds
that can be leveraged in 3D floorplan localization.

• A referencing system that disambiguates deviations
between as-planned and as-built and improves lo-
calization accuracies for locally referenced building
tasks.

• Evaluation of the proposed methods in real-world
experiments on a robotic platform.

This paper is structured as follows: In Section 2, we
present related works on robotic floorplan localization and
semantic localization. In Section 3, we present our pro-
posed 3D architectural floorplan method. We then report
experimental results on a mobile robotic platform in Sec-
tion 4, where these results are also discussed. Finally, we
conclude our findings in Section 5.

2 Related Work
While registration of scans to building models is a well-

studied problem in surveying [3], the application was stud-
ied less extensively in robotics. The important difference
between these applications is that 3D scanners used in sur-
veying remain stationary while scanning an environment
(usually for at least some seconds), whereas registration
on robotic systems is especially important while the robots
move around. This registration or in the robotic sense lo-
calisation1 is part of the state estimation that is required to
accurately control the robot’s movement. Robotic LiDAR
sensors therefore are in general much faster 3D scanners
that however also yield more sparse and imprecise scans
and therefore pose unique challenges.

2.1 Robot Localization in Architectural Plans

With the raise of LiDARsensors, differentworks studied
2D robot localization within floorplans [4, 5]. However,
to execute construction tasks, 2D localization is insuffi-
cient. Walls might be tilted or floors elevated such that

1For the purpose of this work, registration and localisation are used
synonymous.

water can run off. At higher levels of accuracy, the flat
and rectangular world assumption therefore is no longer
valid. [6] therefore studied the extension of conventional
methods to 3D, but rely on a special measurement sys-
tem to localize their robot’s endeffector with respect to
local reference walls. In this work, we study localization
methods that do not require manipulators mounted on the
robot. Bosché [7] shows ICP-based localization of 3D scan
data within building mesh models under the assumption
of negligible deviations between model and reality.

In case that LiDAR sensors are not available, research
hasmade progress to extract floorplan-like information out
of camera images [8]. Boniardi et al. [9] studied how such
information can be used to localize a robot in 2D within
a given floorplan. Mendez at al. [10] localize an RGB
camera in floorplans based on semantic information and
can show that their method does not benefit from range
information.

2.2 Semantically EnrichedLocalizationwith LiDARs

Global localization techniques can be robustified by us-
ing semantic cues [11]. However, the considered seman-
tics only considered distinct classes as information cue,
while our approach is more fine-grained using seman-
tic information for filtering and weighting measurements.
Closest to our work is [12]. The authors propose to use
a semantic segmentation network on LiDAR data and a
semantic consistency term in a surfel-based map repre-
sentation to filter dynamic objects over multiple observa-
tions. Furthermore, the work proposes to weigh associa-
tions of an ICP registration using semantic label classifi-
cation scores. Our work differs in the used network that
does not require pre-knowledge about semantic classes,
and can generalise to reliably detecting outliers outside its
training distribution.

2.3 LiDAR Registration

Among the first papers, [13] describe the use of ICP for
registration of 3D shapes, i.e., an iterative error minimiza-
tion over 3D point-correspondences. A multitude of vari-
ants were proposed since, including more generalized for-
mulations also including probabilistic measurements [14],
and variants that skip the re-association step [15]. A com-
prehensive overview is given in [16]. Further notable reg-
istration algorithms rely on feature extraction [17], or rep-
resenting data as a probability density [18]. [19] demon-
strate ICP for localizationwith respect to a known object in
the environment using a LiDAR scanner, achieving sub-
centimeter accuracies. [20] achieve sub-cm accuracies
using 2D LiDAR localization in a reference scan of the
environment. However, the authors also introduce clut-
ter and dynamics to the scenes which heavily degraded
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RGB Image Segmentation Fusion into Scan Alignment References in Model

Figure 2: Overview of the proposed method: RGB images are segmented into foreground and background using a
robust segmentation network [2]. These pixelwise scores are then propapgated and fused with LiDAR scans. The
classifications are then used as weights in the floorplan localization which performs a weighted selective localization
in a 3D floorplan given local task references.

the achievable accuracies. Without modifying the princi-
pal ICP solution, our method proposes to use only partial
data, i.e., local references for scan registration. Further-
more, we explicitly consider outliers.
More robust pointcloud registration such as

TEASER [21] have been proposed, but rely on
3D Keypoint descriptors, which perform poorly in
manhatten-world building plans.

3 Method
An overview about the proposed method can be found

in Figure 2. In the following, we first describe the input
processing pipeline for LiDAR scans and define the gen-
eral problem of registering and aligning scans to building
models. Subsequently, we describe how further infor-
mation on the task references can be used to define the
alignment more accurately. The whole method assumes
a good initial guess for the robot pose to coarsely align
the building plan with the initial pose of the robot. This
initialization can be provided manually or with a global
localization method.

3.1 Semantic Filtering

Classic semantic segmentation of images or pointclouds
relies on large datasets to train networks to reasonable per-
formace. Unfortunately, there are no such labelled datasets
available for construction environments. Moreover, con-
struction environments are highly dynamic with a lot of
potential object classes appearing, whereas we are only in-
terested in background-foreground segmentation, i.e., sep-
arating building surfaces from any other scene contents.
Due to the limits of available datasets and the potential
problems with training on a fixed set of classes, we use
an alternative segmentation method described in [2]. The
density estimation network from Marchal et al. is trained
on the NYU Indoor Room Dataset [22], but able to gener-
alize better than classical methods to new environments.
In particular, we use their best performing model, which
is a regression over density estimation at multiple layers
of the feature extractor. Instead of a binary segmentation,
the method returns a per-pixel score that is higher if the
pixel belongs to background structure of a building. We

will hereafter refer to this score as density value 3.
The proposed localization system relies on a multi-

camera plus LiDAR setup with known intrinsic, extrin-
sic and timestamp calibrations. Whenever a new LiDAR
scan arrives, we rectify the corresponding set of images
� = {�0, �1, ...} and process them in the density estimation
network [2].
From the scanned LiDAR points % = {?1, ?2, ...}, we
project each point onto each image plane. For those points
?8 within the field of view of a camera, we assign the den-
sity value 38 to the point. We reject all points that cannot
be projected onto any of the images, but select camera
lenses such that the amount of such points is negligibly
small.
To localize within the building model, the scan % is

aligned to the model with point-to-plane ICP:

)icp = ��%(%, () = argmin
)

∑
8

F8 2 [(?8 − <8) · n(<8)]

where 2() is a cost function, <8 is a matched point of ?8
in the building model ( and n(<8) is the surface normal
at that point.
For the weight F, we propose two variants:

F8 =

{
0 38 < X

1 38 ≥ X
(1)

F8 = max(0, 0 38 − X′) (2)

Where 0 is a normalization factor such that max
8
F8 = 1.

Equation (1) corresponds to a binary segmentation of the
scan where only those points which belong to background
structure are considered in the ICP problem (masked clut-
ter) and equation (2) assigns higher weights to points
that are more likely to belong to background structure
(weighted clutter). The non-binary weighting does not
rely on perfect predictions from the density estimation
network and instead uses the prediction confidence in the
ICP optimization.

3.2 (Selective) Localization to References

Wedefine themesh of the buildingmodel as a collection
of closed surfaces ( = {B0, B1, ...}. In general, we can then
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(a) ambiguours alignment (b) high-error alignment

Figure 3: Illustrations for deviations between as-planned
(solid) building model and as-built scan from the robot
(dotted). In (a), the alignment of the horizontal walls is
ambiguous and traditional ICP will align that wall with
more points in the scan. In (b), any alignment will yield
high errors and the solution in general depends on the
settings for outlier filtering.
localize the robot with ��%((, %). However, building
models are usually far from perfect maps of the actual
environment, where during the construction phase walls
might be missing, temporary structure such as scaffolding
is not mapped and the relative positions of the final walls
can deviate from the building model. Some of the typical
deviations are illustrated in Figure 3.
To enable the robot to localize precisely in a building

that deviates from the map, we define a subset of walls or
surfaces ' ⊂ ( with ∃ A1, A2, A3 : A1 ∦ A2, A2 ∦ A3, A1 ∦
A3, A1, A2, A3 ∈ '. The reference surfaces therefore define
a (minimally) sufficient alignment problem for the robot
to localize itself, but exclude all surfaces in ( that are
not relevant to a local task and would in case of devi-
ations disturb the alignment. This is further motivated
by most construction tasks being expressed in local refer-
ence frames. Within the case of approximately rectangular
building structures that we study in our experiments, ' is
often the set of surfaces defining a corner in a room. Such
references are part of the task definition and can e.g. be
synchronised online with robot [23].
Initial experiments with our methods showed that in

cases where the surfaces in ' are only measured with a
few points of the LiDAR scan %, the ICP alignment can
fail with huge errors. We therefore propose the following
localisation procedure:

1. Find the alignment ) (C)full mesh = ��%((, % |)
(C−1) )

2. Refine the alignment to the references
)
(C)
references = ��%(', % |)

(C)
full mesh)

3. Reject ) (C)references if
���) (C)references − )

(C)
full mesh

��� is too large.

4 Experiments
4.1 Experimental Setup

Weconduct our experiments on the supermegabot2 plat-
formwith a LiDAR and three cameras. The robot is further

2github.com/ethz-asl/eth-supermegabot

LiDAR

Cameras

IMU

Figure 4: Sensor setup on the robot.

equipped with an IMU for smooth state estimation. The
exact sensor configuration is shown in Figure 4.
We calibrate all cameras individually using Kalibr3 [24,

25] to obtain intrinsics and extrinsics with respect to the
IMU. We then record a joined motion of LiDAR and cam-
eras to find their respective transformations using visual-
intertial odometry [26] with one of the cameras and op-
timizing the alignment of LiDAR scans with respect to
that trajectory4. Time-synchonization is achieved with
the VersaVIS [27] camera trigger board that synchronizes
time between the host, all cameras and the IMU, while
negligible time-offset is assumed between the host and the
LiDAR.5
We supply the robot with a 3D mesh of the building

that is generated from the available 2D floorplan. Because
there are no information of the floor or the ceiling structure
available, we add a planar floor to the mesh and give all
walls the same height. Reference surfaces are specified as
a subset of the same mesh.
To measure ground-truth, we attach a prism to the robot

and measure the position with a total station referenced
to the origin of the building plan that the robot is using
as a map. We calibrate the prism position with respect to
the robot frame by aligning trajectories of the robot mov-
ing around. In case that as-built reference walls deviate
from the building plan in absolute coordinates, we mea-
sure this deviation and correct the ground truth position
accordingly.

4.2 The Effect of Clutter

To verify the influence of clutter objects and mov-
ing workers on the general localization performance of

3github.com/ethz-asl/kalibr
4github.com/ethz-asl/lidar-align
5While complicated, this procedure is necessary such that the image

segmentation is correctly propagated into the LiDAR scan.
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(a) Location A

(b) Location B

(c) Location C

(d) Site Overview

Figure 5: Selected locations and reference walls (marked
red in d) for our experiments. All locations also have the
floor as a reference surface. The red border around the
images corresponds to the forward-facing camera.

a robotic system, we compare localisation at the same po-
sitions with and without clutter in Table 1.
We conduct experiments with a stationary robot while

a construction worker is moving around the robot and
clutter objects such aswooden boards and equipment boxes
are placed to partially obstruct measurements to reference
walls. For each location, we analyze a sequence of around
1 min. or 300 LiDAR scans.
The investigation shows that on-site clutter negatively

affects the localisation accuracy and therefore confirms
our initial hypothesis.

4.3 The Effect of As-Built Deviations

To simulate a severe deviation between as-planned and
as-built, we move the upper and lower structure in Figure 5
apart by 0.3m in the mesh supplied to the robot. While
the initial building mesh without this added deviation is
already not an accurate representation of the environment,
this further augmentation is used to compare localisation
accuracy accross higher and lower deviations.

clutter Loc. A Loc. B
no 157 74
yes 218 83

Table 1: Influence of clutter on the localization accuracy
(RMSE in mm). For this comparison, the robot localizes
the full LiDAR scan in the full buildingmodel. At location
C, the clutter was fixed to the environment and therefore a
comparison without clutter could not be done.

deviations Loc. A Loc. B Loc. C
lower 218 83 87
higher 390 222 76

Table 2: Influence of deviations between as-planned and
as-built on the localization accuracy (RMSE in mm). The
robot localizes the full LiDAR scan in the full building
model, in a cluttered environment.

The localisation results of this comparison are listed in
Table 2. In two locations, the additional deviation severely
worsens the localisation results, while it has little influence
on location C. It is expected that particular deviations af-
fect localisation at some locations more than at others. In
general, the results confirm the suspected effect of devia-
tions between as-planned and as-built on the localisation
accuracy.

4.4 Accuracy of the Proposed System

Given the negative effects of deviations and clutter, we
now introduce our robotic system to a cluttered environ-
ment with the stated deviations between as-planned and
as-built. We then analyse the localisation accuracy to
investigate to what extend our introduced mitigation mea-
sures can compensate for the added difficulties.
We compare all combinations of methods described in

section 3 to a baseline of ICP alignment between the full
building model and the full LiDAR scan. We measure re-
peatability by the trace andmaximum eigenvalue of the co-
variance matrices for position and rotation. For accuracy,
we compare the estimated position of the robot against the
total-station tracked prism. This measurement therefore
relies on the estimation of the full robot pose. The results
are given in tables 3, 4 and 5 for the three different test
locations respectively. Additionally, we report the frac-
tion of LiDAR scans that could not be localized either
because ICP did not converge or the solution was rejected
(see section 3.2). To account for non-determinisms in the
localization pipeline, all values are averages over three
executions on the same input data.
From the results we see that in general, selective local-

ization against reference walls constraints the localization
very well in two dimensions. The trace and maximum
eigenvalue for localisation against reference surfaces are
very close, whereas there is uncertainty in more than one
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Figure 6: Topview on position C of the distribution of localization outputs for the stationary robot. All points are
transformed to the estimated position of the tracking prism. The ground-truth location is given by the output of the
total station for the tracked prism.

ICP Input Pos. Repeatability Rot. Repeatabilty Accuracy Failure Rate
map scan max eigenval. trace max eigenval. trace rmse [mm] [%]
full mesh full 22.3 25.9 2.7 8.0 390 0.0
full mesh masked clutter 1.5 2.5 2.9 8.6 290 4.9
full mesh weighted clutter 10.1 12.7 3.0 8.9 354 8.2
references full 121.1 127.2 5.3 15.9 452 50.3
references masked clutter 31.9 32.2 5.1 15.2 232 44.1
references weighted clutter 330.5 338.6 14.1 42.4 627 76.5

Table 3: Stationary Localization Study Position A

ICP Input Pos. Repeatability Rot. Repeatabilty Accuracy Failure Rate
map scan max eigenval. trace max eigenval. trace rmse [mm] [%]
full mesh full 3.3 5.9 3.2 9.6 222 0.0
full mesh masked clutter 1.4 2.3 3.4 10.3 342 5.3
full mesh weighted clutter 3.8 5.6 3.6 10.7 230 8.1
references full 7.6 8.0 3.4 10.3 328 4.8
references masked clutter 2.6 2.7 4.2 12.6 68 21.3
references weighted clutter 17.1 18.4 7.0 21.0 244 52.6

Table 4: Stationary Localization Study Position B

ICP Input Pos. Repeatability Rot. Repeatabilty Accuracy Failure Rate
map scan max eigenval. trace max eigenval. trace rmse [mm] [%]
full mesh full 1.8 2.9 4.3 12.9 76 0.0
full mesh masked clutter 14.8 17.1 4.4 13.3 153 3.7
full mesh weighted clutter 4.0 5.2 4.6 13.7 103 6.4
references full 0.9 1.0 4.3 13.0 65 0.3
references masked clutter 28.7 28.9 5.9 17.6 154 25.6
references weighted clutter 1.0 1.5 4.8 14.4 52 9.8

Table 5: Stationary Localization Study Position C
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direction for registration against the full building model.
The same effect is illustrated in figure 6. This raises the
question why the localization shows such a high variance
in lateral direction in all three locations. A more detailed
evaluation of the test site shown in figure 5 reveals that
most of the walls in the building model are parallel to the
G axis of the model and much fewer structures are paral-
lel to the H axis. For all 3 locations, however, the lateral
localization depends on the alignment of surfaces parallel
to the H axis. The biggest available structure in this di-
rection, which is also the reference wall for location C, is
obstructed by a van parked in front of the wall. Therefore,
for all three locations, the observable part of the lateral
reference structure is small compared to both other direc-
tions and a higher localization uncertainty in G direction
had to be expected.
Our experiments further show that semantic filtering is

more important when localising against reference surfaces
than when using the full mesh. Intuitively, localising only
against references is more vulnerable to obstructions of
these surfaces. While localisation in the full mesh is also
worse in presence of clutter, as shown in table 1, our
experiments show in two of three locations that without
semantic filtering of the clutter, this impact is even more
severe when localising against reference surfaces.
In all locations, the highest accuracy is achieved with a

combination of semantic filtering of the LiDAR scan and
selective localization to reference surfaces. The accuracy
gain ranges from 32% in position C to 69% in position
B. However, we could not find a single combination of
methods that always worked. We found the performance
of the semantic filtering method to be highly dependent on
the location and the respective performance of the density
estimation network. As we already describe in section
3.1, semantic classification in construction environments
is difficult due to the lack of labelled data. The density
estimation network from [2] showed reasonable perfor-
mance for our test location, but still partially filtered out
background structure that was too different from the train-
ing domain. In particular in location C, binary filtering of
the pointcloud removed nearly all points on the lateral ref-
erence wall, resulting in high uncertainty and failure rate.
We conclude that for precise localization of robots on con-
struction sites, outlier filtering and selection of high quality
measurements are key aspects. While learning-based so-
lutions show promising characteristics in this regard, they
require more domain-specific training data to further boost
their performance.

5 Conclusion
In this work, we present a mobile on-board localiza-

tion system for construction robots. In our experiments,
we show that building deviations and clutter deteriorate

accuracy of traditional registration methods, and find that
a combination of semantic filtering of LiDAR scans and
selective localization to reference walls yields essential
accuracy gains. Our findings show a need for semantic
datasets closer to the construction domain and a need for
more research to further close the accuracy gap between
external reference systems and on-board sensing.
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